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A CRITICAL ASSESSMENT OF THE SMAGORINSKY MODEL 

AND A NEW APPROACH TO LARGE-EDDY SIMULATIONS 

Charles G. Speziale 

Aerospace & Mechanical Engineering Department 

Boston University 

Boston, MA 02215 

ABSTRACT 

The Smagorinsky model for the large-eddy simulation of turbulence is critically assessed 

from a basic theoretical standpoint. It is shown that this model does not respond properly to 

the coarsening of the mesh because of its incorrect dependence on the dimensional mesh size. 

Rather, it is the dimensionless ratio of the computational mesh size to the Kolmogorov length 

scale that determines how well resolved a computation is and should be used to parameterize 

subgrid scale models. Furthermore, the Smagorinsky model has no dependence on rotational 

strains and depends improperly on the irrotational strain rate invariants. These facts tend 

to explain why the Smagorinsky constant is not in reality a constant in applications. An 

entirely new methodology for large-eddy simulations that is suitable for complex geometries 

is proposed that eliminates these deficiencies. In this new approach to large-eddy simulations, 

subgrid scale models go continuously to Reynolds stress models in the coarse mesh/infinite 

Reynolds number limit. 

Key Words :   Smagorinsky Model; Large-Eddy Simulations; Turbulence 



1. INTRODUCTION 

For the past thirty-five years, the Smagorinsky [1] model has served as a cornerstone 

for the large-eddy simulation (LES) of turbulence (see Rogallo and Moin [2] for an inter- 

esting review). Even though improvements have been attempted, the basic model has been 

largely maintained in applications. For example, the linear combination model of Bardina, 

Ferziger and Reynolds [3] introduced the scale similarity model for the subgrid scale Leonard 

and cross stresses but maintained the Smagorinsky model for the subgrid scale Reynolds 

stresses. Earlier investigators had modeled the subgrid scale Reynolds and cross stresses 

by the Smagorinsky model while the Leonard stresses were calculated directly by a con- 

volution - an approach that destroyed the Galilean invariance of the filtered equations of 

motion (see Speziale [4] along with Biringen and Reynolds [5] and Moin and Kim [6]). The 

recently formulated dynamic subgrid scale stress model of Germano, Piomelli, Moin and 

Cabot [7] maintained the basic format of the Smagorinsky model. It merely allowed for the 

Smagorinsky constant to be a variable computed by an appeal to multiple filters (a test filter 

is introduced in addition to the grid filter). However, the Smagorinsky model suffers from 

a major deficiency in that it depends dimensionally on the computational mesh size. The 

quantity that determines how well resolved computations are is the ratio of the computa- 

tional mesh size to the Kolmogorov length scale. In the Smagorinsky model, the subgrid scale 

stress Tij -^ooas the mesh size A —> oo. Hence, a badly calibrated Reynolds stress model 

is obtained in the coarse mesh limit that is far too dissipative as will be discussed in this 

paper. Furthermore, the Smagorinsky model has no dependence on rotational strains which 

makes it impossible to describe rotating turbulent flows properly. The example of rotating 

isotropic turbulence will be considered to illustrate this point. In addition, its dependence on 

the irrotational strain rate invariants is incorrect - along with the improper dependence on 

the dimensional mesh size - necessitating, ad hoc adjustments of the Smagorinsky constant 

(the Smagorinsky constant can change by a factor of two even in basic flows). There is no 

question that there are problems with the Smagorinsky model and it should be abandoned 

in the future. It only correlates with DNS at the 50% level - an extremely poor result as 

will be demonstrated. The Smagorinsky model has probably only been successful because it 

drains approximately the correct amount of energy to account for the energy cascade to the 

scales that are left unresolved - a feature that is achieved by the ad hoc adjustment of the 



Smagorinsky constant. 

After first reviewing large-eddy simulations and the basic structure of the Smagorinsky 

model - which is nothing more than a tensorially invariant mixing length model where the 

mixing length is taken to be proportional to the computational mesh size - an entirely new 

methodology for large-eddy simulations will be presented. A grid function that depends on 

the ratio of the computational mesh size to the Kolmogorov length scale will be introduced 

that goes to one in the coarse mesh limit and vanishes in the fine mesh limit (in this way, one 

goes continuously from a DNS to an LES and then to a Reynolds-averaged Navier-Stokes 

(RANS) computation). Here, the Kolmogorov length scale is estimated by the Reynolds- 

averaged modeled dissipation rate equation. Since the turbulent dissipation rate is raised to 

the 1/4 power it only necessitates that the turbulent dissipation rate be calculated to within 

a 50% accuracy to get a good estimate of the Kolmogorov length scale as will be discussed. 

This is quite feasible with the current generation of Reynolds stress models for a broad 

range of flows. There is, additionally, a built-in dependence on rotational strains through 

anisotropic eddy viscosity terms which are dispersive and can account for backscatter ef- 

fects. Furthermore, in the eddy viscosity there is is a dependence on both the irrotational 

and rotational strain rate invariants that is non-dimensional and is consistent with Reynolds 

stress models. Hence, a state-of-the-art Reynolds stress model is recovered in the coarse 

mesh/infinite-Reynolds-number limit; in the fine mesh limit, r,j -» 0 yielding a direct nu- 

merical simulation (DNS). The approach to filtering will be discussed in considerable detail. 

A filter that yields the minimum contamination of the large scales is proposed in order to 

avoid the problem of defiltering which constitutes an ill-posed mathematical problem. In 

practical LES, the large-scale velocity field must be approximated by the filtered velocity. 

Reynolds-averaged quantities are then obtained by taking ensemble averages (time averages 

in a statistically steady turbulence). This new methodology for large-eddy simulations will 

be discussed which has the potential to bridge the gap between DNS, LES and RANS. It 

formally constitutes a combined LES/time-dependent RANS capability that requires doing 

a Reynolds stress calculation in parallel with the LES (this only adds approximately 10% to 

the computational expense). There is no question that the Smagorinsky model is deficient 

and should be abandoned as a relic of the past. 



2. A CRITICAL REVIEW OF LARGE-EDDY SIMULATIONS AND THE 

SMAGORINSKY MODEL 

The foundation was laid for the large-eddy simulation of turbulence in the ground break- 

ing paper by Smagorinsky [1] over thirty years ago. Due to the fact that the small scales of 

turbulence serve mainly to drain energy from the large scales through the cascade process, 

it was felt that their effect could be modeled instead of being resolved. Since the small 

scales of turbulence were believed to be more universal in character based on theoretical 

considerations dating from the time of Kolmogorov [8], it was argued that the large scales 

- which contain most of the energy and are known to be affected significantly by the flow 

configuration under consideration - should be computed directly while the small scales are 

modeled. This has formed the basis for large-eddy simulations which were first implemented 

into meteorological computations shortly after the pioneering work of Smagorinsky [1]. 

Large-eddy simulations (LES) are based on the filtered equations of motion. Any flow 

variable <j>, in the fluid domain D, can be decomposed into a large scale part and a small 

scale part, respectively, as follows [2]: 

4 = 1 +4> (l) 

where 

$= [ G(x- x*, A)<f>(x*)d3x* (2) 
JD 

constitutes the spatial filter of <f>. In (2), A is the computational mesh size and G is a filter 

function which is normalized as follows: 

L G(x-x*,A)d3x* = l. (3) 
D 

The filter function G has usually been taken to be a Gaussian filter in infinite domains or a 

piecewise continuous distribution of bounded support in compact domains (in the latter case, 

the simple box filter has been commonly used with finite difference methods; see Deardorff 

[9]). These features, along with the normalization constraint (3), guarantee that G becomes 

a Dirac delta sequence in the limit as A —> 0: 

Km / G(x - x*, A)<£(x*)dV = f S(x- x*)<£(x*)dV = <KX) (4) 
A-+0 JD JD 



where £(x - x*) is the Dirac delta function. Direct numerical simulations (DNS) are, thus, 

recovered in the fine mesh limit. Due to the Riemann-Lebesgue Theorem, (2) substantially 

reduces the amplitude of the high-wavenumber Fourier components in space of any flow 

variable 0 (consequently, ^ represents the large scale part of <f>). Unlike with traditional 

Reynolds averages, 

ftf,    ?^0 (5) 

in general. 

In incompressible flows, a straightforward filtering of the Navier-Stokes equations yields 

[2]: 
dui    _ dui dp 2_     dTij . . 
— + Ttj-r— = --5— + UV Ui ~ -T— [0) 
dt dxj        oxi oxj 

where Ü,- is the filtered velocity, p is the filtered kinematic pressure, v is the kinematic 

viscosity and r,-,- is the subgrid scale stress tensor (r,j -> 0 as A -> 0). From the direct 

filtering of the continuity equation: 

£-0. (7) 
oxi 

The complete form of the subgrid scale stress tensor is as follows: 

Tij = La + Cij + Rtj (8) 

where 

Lij = üiüj — üiüj (9) 

dj = üiu'j + u'iüj (10) 

Rij = u\u>- (11) 

are, respectively, the Leonard stresses, subgrid scale cross stresses and subgrid scale Reynolds 

stresses (see Leonard [10]). 

The first subgrid scale stress model was proposed by Smagorinsky [1] in his groundbreak- 

ing work on large-eddy simulations as discussed above. The Smagorinsky model constitutes 

an eddy viscosity model that takes the form: 

Tij = -<%A*(2Su'Su)1'*3ii (12) 

where 

'J      2 [dxj + dxi 



is the filtered rate of strain tensor and Ca is a constant that bears his name (i.e., the 

Smagorinsky constant). Here, it should be noted that, for consistency, (12) only applies 

to the deviatoric, i.e., traceless, part of r,j (the isotropic part of r,j can be absorbed into the 

pressure in incompressible flows). 

For thin shear flows where ü = ü~(y) i (given that i is a unit vector in the z-direction) it 

follows that the Smagorinsky model (12) collapses to the form 

__1 
■XV--2 
r™ = -rC„2A2 

du f (13) 
dy dy 

which is identical in form to the mixing length theory of Prandtl [11] for the Reynolds 

shear stress where the mixing length is proportional to the computational mesh size A. 

Hence, it can be argued that the Smagorinsky model is nothing more than a tensorially 

invariant mixing length theory where the mixing length is taken to be proportional to the 

computational mesh size since it is a subgrid scale stress model rather than a Reynolds stress 

model. 

The Smagorinsky model has several deficiencies that can be summarized as follows: 

(1) The Smagorinsky constant is not in reality a constant. It can vary by as much as 

a factor of two or three from flow to flow. This is because the Smagorinsky model is badly 

parameterized. Furthermore, it only correlates with DNS at the 50% level. To get an idea 

of how poor this result is, the correlation between the functions y = x and y = e~x on the 

interval [0, 1] is more than 50% despite the fact that they are qualitatively different functions 

(one is monotonically increasing while the other is monotonically decreasing)! 

(2) The Smagorinsky model does not depend on the rotational strains through the 

invariant ( oc {WijWijfl2 (Wij = \{düildxj - düj/dxt) is the filtered vorticity tensor) 

and, furthermore, has the wrong dependence on the irrotational strain rate invariant n oc 

(SijSij)1/2. For Reynolds stress models in equilibrium, the eddy viscosity 

3 
VT K 3 - 2T/2 + 6£2 

(see Gatski and Speziale [12]). 

(3) The dependence on the computational mesh size A should be through the dimen- 

sionless ratio A/LK-  What determines how well a computation is resolved is whether or not 



the grid size is small (or large) compared to the Kolmogorov length scale. The dimensional 

dependence on A in the Smagorinsky model is simply incorrect. In the Smagorinsky model, 

Tij —> oo as A -> oo. Hence, a badly calibrated Reynolds stress model is obtained in the 

coarse mesh limit. The model becomes far too dissipative as the mesh becomes coarse. 

In so far as point (2) is concerned, this makes it impossible for the Smagorinsky model 

to properly describe rotating flows. For example, it is well known that in a rapidly rotating 

isotropic turbulence, the cascade is essentially shut off so that the turbulence undergoes a 

linearly viscous decay (see Speziale, Mansour and Rogallo [13]). Hence, it is possible to con- 

duct direct simulations even at high turbulence Reynolds numbers. The Smagorinsky model 

is far too dissipative in this case where it can yield results that are completely erroneous. For 

a rapidly rotating isotropic turbulence, the Smagorinsky constant is essentially zero except, 

perhaps, at astronomically high Reynolds numbers or for extremely coarse meshes. 

While the dynamic subgrid scale model of Germano, Piomelli, Moin and Cabot [7] does 

address point (1) through a variable Smagorinsky constant, it does not address the other 

criticisms. Furthermore, with its multiple filters it is not suitable for complex geometries. If 

LES is to make an impact on the complex turbulent flows of technological importance it is 

essential that this shotcoming be overcome. In the next section, a new approach to large- 

eddy simulations will be proposed that overcomes each of the deficiencies of the Smagorinsky 

model outlined above. 



3. A NEW APPROACH TO LARGE-EDDY SIMULATIONS 

The new methodology that is being proposed for large-eddy simulations has subgrid scale 

stress models that are of the following form: 

Tij = -[1 - expi-ßA/LKWaJ^O^-Sij + T* (14) 

where r,^ represents the anisotropic part of the subgrid scale stress tensor. Here, an overbar 

represents a standard filter whereas 

r, = aiCSijSijY'2-,    £ = a^aWiif'2- (15) 
£ £ 

where S(j and Wij are the filtered rate of strain and vorticity tensors, A is the computational 

mesh size, LK = i/^/e1/4 is the Kolmogorov length scale, and ß, cti, a2 and a3 are constants; 

ai, a2 and a3 are obtained from a Reynolds stress model along with the function /). Here, K 

and £ represent the Reynolds-averaged turbulent kinetic energy and dissipation rate obtained 

from a Reynolds stress calculation with the two-equation models equivalent to that given 

above in the coarse mesh limit as A/LK —> oo. 

In the coarse mesh limit, a Reynolds stress model given by 

K2 — 
Rii = -a1f{7,,t)—Sii + I% (16) 

£ 

is recovered which is an explicit algebraic stress model (see Gatski and Speziale [12]). The 

turbulent dissipation rate e - and, hence, the turbulent kinetic energy K - have to be 

obtained anyway in order to get an estimate of the Kolmogorov length scale LK- Since, 

the Kolmogorov length scale LK = f3^4/^^4, the dissipation rate only has to be estimated 

to within 50% with the modeled dissipation rate equation to get a good estimate of the 

Kolmogorov length scale (the dissipation rate is raised to the 1/4 power as mentioned before). 

This is quite feasible with state-of-the-art Reynolds stress models. Thus, this methodology 

requires that a RANS calculation be done in parallel with the LES. This will, in most 

circumstances, only add at most 10% to the computational expense. Here, we parameterize 

the model in terms of the Reynolds-averaged turbulent kinetic energy and dissipation since 

the subgrid scale turbulent kinetic energy and dissipation rate can vary too much locally. 

This model has been written before in the shorthand notation as (see Speziale [14]) 

m = [1 - expi-ßA/LKTRij (17) 



where Rij is a Reynolds stress model that is written partially in terms of filtered fields. An 

explicit algebraic stress model is used for this purpose as discussed above. 

The anisotropic eddy viscosity terms take the form 

7y4 = [1 - exp(-ßA/LK)}[a4^f(V,0(WikSkj+WjkSki) 

K3 — —       1— — 
+<X5f(v,0—(sikSkj- -SkiSkihj)} (18) 

£ o 

where again the overbar represents a filtered quantity whereas K and e are the Reynolds- 

averaged turbulent kinetic energy and dissipation rate obtained from a Reynolds stress cal- 

culation (a4 and a5 are constants). In the coarse mesh limit as A/LK —> oo, the anisotropic 

eddy viscosity terms of an explicit algebraic stress model are recovered (see Gatski and 

Speziale [12]). These terms are dispersive in character and can account for backscatter ef- 

fects. For example, Clark, Ferziger and Reynolds [15] obtained the subgid scale stress model 

from a Taylor expansion: 

Since 
dui    Sa + Wii (20) 
dxj 

it is a simple matter to show that (19) is of the same tensorial form as (18). However, 

it depends improperly on the dimensional mesh size and dimensional strain rate invariants 

(the term containing WikWkj was, furthermore, shown by Speziale [16] to be inadmissible 

for Reynolds stress models). It was shown by Clark, Ferziger and Reynolds [15] that this 

kind of anisotropic eddy viscosity term can account for backscatter effects. 

For Reynolds stress models in equilibrium 

/(7^)=3-2^ + 6f (21) 

A singularity can occur when this expression is applied to turbulent flows where there are 

significant departures from equilibrium. Gatski and Seziale [12] intoduced the simple regu- 

larization 
3 _ 3(1 + ,°) (22) 

3 - 2T/
2
 + 6£2      3 + T/

2
 + 6f if + 6£2 

which is obtained by a Taylor series expansion.   For turbulent flows in equilibrium where 

77, £ < 1, it yields results that are indistinguishable from (21) where it formally applies. But 

9 



it is regular and computable for all values of n and £. More recently, Speziale and Xu [17] 

obtained expressions via a formal Pade' approximation that builds in some limited agreement 

with the Rapid Distortion Theory (RDT) theory solutions for plane shear and plane strain 

turbulence. The constants in this Reynolds stress model are given by 

on = 0.374,    a2 = 0.145,    a3 = 0.308, (23) 

a4 = 0.115,    a5 = 0.108. (24) 

This Reynolds stress model has been tested in a variety of benchmark turbulent flows (see 

Gatski and Speziale [12]). The turbulent kinetic energy K and dissipation rate e are obtained 

from modeled versions of their Reynolds-averaged transport equations which take the form 

(cf. Speziale [16]) 
8K d   (vTdK\ ,ocN 

dt oxi \<Tk oxi) 

%+*.Vt = CALV-C   *+'[!**) (26) 
dt K K     oxi \<TE oxij 

where V = -Tijdüi/dxj is the turbulence production and Cei, Ce2, <Tk and <re are constants 

that assume the values of 1.44, 1.83, 1.0 and 1.3, respectively. These equations have served 

as a cornerstone for two-equation models. In order to integrate this model to a wall it is only 

necessary to remove the singularity in the destruction term that appears on the right-hand- 

side of (26) with the coefficient Ce2 (see Speziale and Abid [18]). No ad hoc wall damping 

functions are needed in the Reynolds stress model. This is accomplished by replacing Ce2 

with the term 

Ce2[l - exp(-RjlO)} (27) 

where Ry = K^^y/v given that v is the kinematic viscosity and y is the coordinate normal 

to the wall. In many applications, a small vortex stretching term has been added to (26) 

to make the calculations better behaved. It removes the singularity in plane stagnation 

point turbulent flows and, furthermore, allows for the description of both the log-layer and 

homogeneous turbulence in equilibrium with a simple unified model where it is not necessary 

to solve the cubic equation arising out of the consisistency condition (see Abid and Speziale 

[19] and Speziale, Jongen and Gatski [20]). 

10 



In a rapidly rotating isotropic turbulence, /(?/,0 -» 0 so r,j -> 0 yielding a DNS. This 

results from the fact that [16] 

_       1 (dui     duj\ 

in rotating frames where Qm is the rotation rate of the frame and emji is the permutation 

tensor (hence, £ ~ ti in a rapidly rotating flow with angular velocity ti). As mentioned 

earlier, in a rapidly rotating isotropic turbulence the energy cascade is essentially shut off so 

that direct numerical simulations can be conducted with a 1283 mesh even at high turbulence 

Reynolds numbers. A 1283 mesh forms a cornerstone of this new approach to LES as will 

soon be discussed. In contrast, the Smagorinsky model is far too dissipative so it yields 

incorrect results for this problem. 

The grid function 

[1 - exp(-ßA/LK)]n (28) 

bridges the gap between DNS, LES and RANS where LK is the Kolmogorov length scale 

LK — i/^/e1/4 estimated from a Reynolds stress calculation (again, A is the computational 

mesh size). In the limit as A/LK -> oo the grid function goes to one and we recover a 

Reynolds stress model whereas in the limit as A/LK -> 0, it goes to zero and we formally 

recover a DNS. Actually, when A/LK is of order one, we should have a DNS (this has been 

built into the calibration). Since LK = Rt~
3/4K3^/e where Rt = K2/ve is the turbulence 

Reynolds number, A/LK —> oo as Rt —> oo (thus, we recover a Reynolds stress model in the 

coarse mesh/infinite-Reynolds-number limit). For the initial calculations, n has been taken 

to be one and ß has been calibrated as follows: 

ß « 0.001. (29) 

A power law for the grid function has been theoretically obtained using Renormalization 

Group methods (Woodruff and Hussaini [21]). Note that for A/LK < 100, we approximately 

obtain a power law from (28) via a Taylor expansion. Most practical LES are conducted for 

A/LK = 10 — 100. In complex geometries, 

A = (A^A,)1'3 (30) 

where A^, Ay and A2 are the mesh sizes in the x, y and z directions, respectively, obtained 

after a coordinate transformation. The box filter can be used in complex geometries which 

11 



is given by 

««-**>-{ r'-&::?!>£ (31) 

for i = 1,2,3 where A,,., is Ax, A„ and A„ respectively (A is given by (30)). 

Finally, some comments are needed concerning the choice of a filter in this new approach 

to large-eddy simulations and the melding together of spatial filtering in LES and Reynolds 

averaging in RANS. We want a filter that yields the minimum contamination of the large 

scales. The reason for this is clear; defiltering must be avoided since it constitutes an ill- 

posed mathematical problem as stated earlier. The purpose of practical LES is to predict the 

Reynolds-averaged fields. In order to do so, the filtered velocity, which is calculated, must 

invariably be used to estimate the large-scale part of the instantaneous velocity which then 

yields the Reynolds-averaged fields through appropriate ensemble or time averages. The 

filtered equations of motion (6) are of the same form as the Reynolds-averaged equations. In 

the coarse mesh limit the ramp function will be one and the model will be so dissipative that 

a RANS calculation will be recovered with a state-of-the-art Reynolds stress model. It is 

envisoned that ensemble averages will be taken even if we are conducting a time-dependent 

RANS. Thus, we do not need to know the effect of the filter - which can never be fully known 

in complex geometries - except, perhaps for model calibration in benchmark flows. This 

allows us to meld together the LES and RANS methodologies which are normally treated 

as disparate approaches. In both of these approaches we calculate what is tantamount 

to the large-scale velocity field - through the same basic equations of motion - and then 

obtain the Reynolds-averaged fields through ensemble averages. The large scales make the 

dominant contribution to the most pertinent fields such as the turbulent kinetic energy. A 

minimum contamination of the large scales can be accomplished with, of the order of, a 128 

computational mesh using a filter with a compact support - such as the box filter - which has 

a small filter width of, say, two mesh points. Some of the previously conducted coarse grid 

LES (which has typically had no more than 323 mesh points) must be avoided wherein the 

filter width has, at times, been as much as 25% of the computational domain, significantly 

contaminating the large scales. Besides, recent increases in computational capacity have 

begun to make 1283 computations much more feasible for engineering calculations (a small 

compromise to 1003 computations can always be made). In addition, it should be noted that 

practical LES - in complex geometries - will require the use of finite difference techniques 

12 



with a compact filter where we will never make explicit use of the filter (these finite difference 

methods should, furthermore, be based on fourth-order accurate finite difference schemes for 

better accuracy). 

13 



4. CONCLUSIONS 

The Smagorinsky model for large-eddy simulations in turbulence was critically reviewed 

and a new approach to large-eddy simulations was presented. The following conclusions were 

arrived at: 

(1) The Smagorinsky constant is not in reality a constant. It can vary by as much as a 

factor of two or three from flow to flow because the model is badly parameterized. In the new 

approach to LES, this variation is parameterized by the Reynolds-averaged turbulent kinetic 

energy and dissipation rate that are obtained from a RANS calculation which is done in 

parallel with the LES adding only approximately 10% to the computational expense. These 

are needed anyhow to get an estimate of the Kolmogorov length scale which is an integral 

part of the new methodology. We decidedly do not use the subgrid scale turbulent kinetic 

energy and dissipation rate for this purpose since they can vary too much. The variation 

of the constants can probably be adequately parameterized by the mean turbulent fields K 

and £. 

(2) The Smagorinsky model does not depend on rotational strains and, furthermore, has 

the wrong dependence on the irrotational strain rate invariant. For Reynolds stress models 

in equilibrium, 
3 

(regularized versions of this representation that avoids the singularity have been used). The 

choice of /(?7,£) °c V in the Smagorinsky model is simply wrong and probably contributes 

to the Smagorinsky constant changing so much. Furthermore, an additional dependence 

on rotational strains has been built in through anisotropic eddy viscosity terms which are 

dispersive and account for backscatter effects. The strain-dependence through the function 

f(r],£) makes it possible to properly describe rotating turbulent flows (the example of ro- 

tating isotropic turbulence was presented) and, also, allows for the integration of the model 

to solid boundaries with no wall damping. The Smagorinsky model, on the other hand, 

decidedly needs empirical wall damping. 

(3) The dependence on the computational mesh size A in the new approach to LES is 

through the dimensionless ratio A/LK- What determines how well a computation is resolved 

is whether or not the grid size is small (or large) compared to the Kolmogorov length scale. 

14 



The dimensional dependence on A in the Smagorinsky model is simply incorrect. Since a 

filter is used that yields a minimum contamination of the large scales (this is guaranteed by 

any filter with a small compact support on a 1283 mesh), a state-of-the-art Reynolds stress 

model is recovered in the coarse mesh/infinite Reynolds number limit as A/LK tends to 

infinity (LK = Rt~
3/4K3/2/e where Rt is the turbulence Reynolds number). On the other 

hand, the Smagorinsky model goes to a badly calibrated Reynolds stress model in the coarse 

mesh limit that is far too dissipative (the same is true of the dynamic subgrid scale model). 

Hence, with this new methodology it is possible to achieve the long held dream of going 

continuously from a large-eddy simulation to a Reynolds stress calculation as the mesh be- 

comes coarse or the Reynolds number becomes extremely large. In wall-bounded geometries, 

the best we can currently do - at extremely high Reynolds numbers - is a Reynolds stress 

calculation since the crucial wall-layer is not resolved. Of course, as with the Smagorinsky 

model, the subgrid scale stress r;j -> 0 in the new model as A -> 0 allowing a DNS to be 

recovered. However, here the dependence is properly parameterized by the dimensionless 

ratio of the computational mesh size to the Kolmogorov length scale, A/LK- 

Some final comments are in order concerning the role of direct and large-eddy simulations 

in turbulence. There is no question that DNS - and the computer in general - has revolu- 

tionized the study of turbulence. DNS has already shed new light on the physics of a range 

of basic turbulent flows and the future potential is enormous. It already appears that in the 

not too distant future, DNS will entirely replace basic benchmark physical experiments for 

homogeneous turbulence and near-wall turbulent flows, at lower turbulence Reynolds num- 

bers. However, it appears that DNS will, for a long time to come, be limited to relatively 

simple geometries and low to moderate turbulence Reynolds numbers. Direct simulations of 

the kind of complex turbulent flows of technological importance, at high turbulence Reynolds 

numbers, could require the generation of data bases with upwards of 1020 numbers. Thus, 

it is crucial that large-eddy simulations be made to work. As far as LES is concerned, it 

must be said that it has never lived up to its initial promise. The way that traditional LES 

has been formulated is probably only suitable for doing less expensive parametric studies 

of benchmark direct simulations once the reliability of the subgrid scale model has been 

established by DNS for the baseline case. In order to solve the complex turbulent flows 

of technological importance, an entirely new approach to LES is needed. Prandtl's mixing 
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length theory was abandoned after four decades when it became apparent that it could not 

address complex turbulent flows. It is time that the same be done with the Smagorinsky 

model in favor of a new approach to LES. 
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